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Abstract. Some features of the probability E{n,R) of a region R in certain log-
potential systems containing precisely n particles are noted. First, it is shown that
a quantity analogous to E(n,R) for a new solvable two-component log-gas can be
expressed in terms of the Toeplitz determinant discretization of a Fredholm determinant
which occurs in the calculation of E(n,R) for Hermitian random matrices. Second, the
first two terms of the asympiotic large-R expansion of E(n,R) for complex random
matrices, when R is a disk, are derived by using an electrostatic/thermodynamic argument
based on an analogy with the two-dimensional one-component plasma. Finally, by using
the Fisher—Hartwig ‘conjecture’ from the theory of Teplitz determinants, the asymptotics
of B{Q,R) for a class of one-dimensional laitice systems is shown o obey a sum nule
which has been conjectured to be applicable to all fluid systems with exclusively mobile
species.

1. Introduction

A quantity which can be used to characterize statistical systems is the distribution
of the spacing between nearest-neighbour constituents of the system. The energy
excitations of heavy nuclei (see e.g. [1]) and the times of arrival and/or service
in a queuveing system (see e.g. {2]) are examples of statistical systems which are
often characterized in this way. As another example, the spacing between oppositely
charged species in two-component log-potential Coulomb systems can be used to
specify the phase of the system [3].

For systems in which the constituents can be ordered linearly, the distribution of
the spacing between nearest neighbours can be calculated, by differentiation, from
the probability that there are no constituents within a prescribed interval. One of the
most important calculations of the latter and related probabilities is for the eigenvalue
distribution of orthogonal, unitary and symplectic ensembles of random matrices [1].

A fundamental quantity in these random matrix calculations is the Fredholm
determinant

Az, 1) = det(1 - 2K) (1.1)
where K is the integral operator on the interval [—t,¢] with kernel
sin w(z — y)
—_— 1.2
m(x—y) (1.2)
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For Hermitian random matrices, the determinant (1.1} is related to the probability
E(n,2t) that exactly n eigenvalues lie in the interval [—t, t] by the formula [1]

ot ot
n! 9z

For arbitrary values of z, the determinant (1.1) is of mathematical interest since it
satisfies a nonlinear equation of the Painlevé type [4-7}. This property has been used
to calculate the large-t asymptotic expansion of E(n;2t) [8]. In section 2 of this
paper we will give a physical interpretation to the Toeplitz determinant discretization
of the Fredholm determinant (1.1} for —1 < z < 0. This complements the physical
interpretation of the same Toeplitz determinant discretization with z = 1 given
recently in [9]. Explicitly, we will calculate the general (n,,n,)-particle distribution
function for an asymmetric two-component lattice gas in which the species interact
via the Jogarithmic potential. From this, we can show that the probability a prescribed
number of lattice points is free of the most dilute of the two-components is given in
terms of the Toeplitz determinant discretization of (1.1).

The quantity analogous to E(n;2t}, E(n;«) say, for random complex matrices
has recently attracted attention [10-12]. Here we require the probability of exactly
n eigenvalues in a disk of radius o« in the complex eigenvalue plane. The large-o
asymptotic expansion of E(n;e) is given in [12]. In section 3 of this paper we
will use a well known [13] analogy between the probability distribution function
for the eigenvalues of random complex matrices, and the Boltzmann factor of
the two-dimensional one-component plasma at a special value of the coupling, to
rederive the leading terms of this expansion. The derivation, which is based on an
electrostatic/thermodynamic argument, gives an asymptotic expansion which should
remain valid for the plasma system at all couplings.

The pilasma systems studied in sections 2 and 3 have an immobile neutralizing
background charge density. This feature is responsible for the leading behaviours

E(G;2t) ~e~®  and  E(0a) ~e %’ (1.4)

where in both cases the exponent is proportional to the square of the ‘volume’
of the particle-free region. For fluid systems with exclusively mobile species, the
leading behaviours analogous to (1.4) are expected to have the exponent directly
proportional to the volume of the particle-free region [9). More precisely, consider
a one-dimensional lattice gas of M sites with lattice spacing r, and suppose that the
grand partition function = has the Jarge-M behaviour

= eMT,@P+w log M +0(1) (15)

E(n;2t) = Az, 1) . (13)

z=1

where 78 P denotes the dimensionless pressure. Then the conjecture of {9] states
that for large-p,

E(O; P) ~e—-—p'r,GP+w logp-}-O(l). (16)

The aim in section 4 is to verify (1.6) for a class of fluid systems with, in
general, n-body potentials. These fluid systems are defined by a special Toeplitz
determinant structure for their Boltzmann factor. The conjecture (1.6) is verified by
using the so-called Fisher-Hartwig ‘conjecture’ (formula) [14-16], which gives terms
up to and including O(1) in the asymptotic expansion of Toeplitz determinants with
discontinuous generating functions. Furthermore, it is found that the terms O{1) in
(1.5) and (1.6) agree; a property we conjecture to hold true in general.
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2. Physical interpretation of the Toeplitz determinant discretization of A(z,t)

2.1. A solvable asymmetric log-gas

Our first objective is to compute the correlation functions for an asymmetric two-
component log-gas confined to a one-dimensional lattice. The correlations will then
be used to calculate E_((; p)—the probability that an interval of p lattice sites is free
of the negatively charged particles. This probability involves the Toeplitz determinant
discretization of A(z,1).

Suppose the positively charged particles have density p,, and the negatively
charged particles density p_, where p_ < p,. Charge neutrality is achieved by
introducing a uniform background charge of density n such that

Py — P =1. (2.1)

Let the charges be restricted to one of two interlacing subiattices which lie
along the X-axis: {rn},—_pr/241,.. 02 fOr the positive charges and {7(m —
@)} m=—nty241,...,m 2 fOr the negative charges (for convenience M is taken to be
even). Also, impose periodic boundary conditions in the direction of the lattice,
period TAfL.

To facilitate the exact calculation, we have found it necessary to first place the
system a finite distance = from a metal wall and to use the grand canonical ensemble in
which the density p_ is controlled by the fugacity £, and the density p_ is controlled
by the fugacity £_. With the metal occupying the region y > e in the XY plane,
the pair potential experienced by a particle of charge ¢ at («,0) due to a particle of
charge ¢’ at (z’,0) is given by

o sinw{z —z')/L
ple, ) = —qq'log | o e 7T

2.2)

where L = T M, and there is a self-energy
$s(z) = Lg% log|sin{2mie/L)]|. 2.3)

In addition to the particles, we require a uniform background of charge density
—gn. Supposing that there are N, positive and N_ negative charges, a short
calculation using (2.2) gives that the energy due to the particle-background and
background-background interaction is

- Zfrnqze(N_[_ - N_)+ =(nq)cL. 2.4)

From (2.2)-(2.4) we can write down the Boltzmann factor for this system. At
the special value of the coupling ¢*/kT = 2 the Boltzmann factor can be written
as a Cauchy double alternant determinant. The corresponding grand partition
function Z,(a, b), generalized to include position-dependent fugacities {, — (, a(n),
¢_. — {_b(m), can then be recognized as in expansion of a particular block Toeplitz
determinant (details of these steps are given in [17], where a similar model in a
two-dimensional domain is considered). The final result is

Z,(a,b) = e—-i’-ran/L det(1,,, + [E;EE)) ﬁ:gg))] (2.5a)
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where
Kule) = %€+ [Siﬂ w(J - ;(j)ZiE/T)/M]H =1, &)
(o) = 24, [smwu o ¢)/ML,,',=1,...,M @)
O e = d N &
JORES 28 [sin G = ﬁ(f)Zia/r)/M],-,,-,= M &%)

1, denotes the identity matrix of order n and
c'-'+ - e47renc+ é-'_ - e—47rsn<-m. (2‘5])

We note in passing that by rearranging the rows and columns in (2.5¢) we can
obtain a block anti-cyclic matrix. With a = b = 1 this matrix can be diagonalized to
give an explicit factorization of the grand partition function:

(1

o .
_ g-2menL Tt gmamle /)= (MH1)/2)/M
€ ]-:-[[(1+Tsinh21re/re

w{_ 41(:/?)(}:—(M+1)/2)/M) (W/T) (. ]
x (1+ TSiIth?rE/Te sinfrg | (2:6)

The distribution of the zeros of (2.6) for ¢, = (_ has recently been analysed by
Smith [18].

22 The correlation functions

By extending the reasoning given in [17] and {19], it follows from (2.5) that
the (j,, jz)-particle (dimensionless) distribution function for j, positively charged
particles at n,,...,n; and j, positively charged particles at m,,....m;, is given
by

h

UG TTORNS FRS . PR T

[G++(n_j - nj')]j,j':l,...,j, (€ (n = m; D)= =lyerdy

= #=heny 2.
det [G_+('mj - njf)];fll ..... » IG _(?n 7?’1 ]J‘Jl_l‘"” ( 7)
=1,
where, in the thermodynamic limit M — oo, G,,. is specified by the set of four

equations (for s;,s; = +,-)

t51 o

z 1 Gs;s (n _n)
Gs;s;(nl—n3)+cal? Z e : :

2 T g+ 2i(e/ T)sgR(sy)

- i i G(—sl)sg(nz - n‘.‘.)
la T z ny — ny + 5gn(s;) ¢

ni=-—-oco

x 1 81,83 2,8
=4 ?(nl—ns+sgn<s1)¢ —n3+2i(s/r)sgn<s1))‘ @5)
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The equations (2.8) can be solved by using Fourier series, as detailed in [17].
Doing this, and taking the limit ¢ — oo so as to remove the metai wall, we obtain

G++(m) = 6m,0 —- MI(m) G+_(m) =-AI(m+ ¢)

G_ (m) = XI{—(m + ¢)) G__(m) = A I(—m) (2.9a)
where
1- -
A= T_T—;t Ay = 1"_”1_” (2.9b)
and
1
I(m)= | e mimigy, 2.9¢
fn , @9¢)

The exact result (2.7), (2.9) complements the exact evaluation of the distribution
functions given by Cornu and Jancovici [20] for the continuous two-dimensional
domain version of this model.

2.3. Probability of an interval free of the negative charges

Let h_{p) denote the probability that the negative charges are excluded from an
interval of p lattice sites. Then for any fluid system defined on a one-dimensional
lattice [9]

P ("_1)1 r P
ho(P) =3 3 e 3 (e ymy) 210)
=0 S | me=1
where p_(m,,...,m,) denotes the dimensionless distribution function for £ particles

of negative charge at m,,...,m,. For the present model, from (2.7},
p(myy . ymy) =detfG__(m; —my s sz e 211
and (2.10} can be recognized as an expanded form of a Toeplitz determinant. Thus
ho(p) =detlé;, — G__(F - F)jp=tp (2.12)

which, after some straightforward rearranging using (2.9a), gives the desired
relationship with the discretization of the Fredholm determinant (1.1):

h, sinmnT(§— k)]
- )\2 ﬂ(j - k) Jik=lip

h_(p) = (1— AP det [aj,k + (2.13)



1184 P J Forrester
3. Asymptotics of E(n;a) for random complex matrices

3.1. The Coulomb gas analogy

Consider a two-dimensional one-component plasma consisting of N mobile positively
charged particles (strength ¢), with positions specified by the complex coordinate

z; = x; +iy;,7 = 1,..., N. Assume a neutralizing background, in the shape of a

disk of radius N centred at the origin, with charge density —q/x. The Boltzmann
factor for the system is, up to a multiplicative constant (see e.g. [21]),

N
He—”“[z/z H |zk_zjlr G.1)
=1

I<i <kgN
where
= ¢*/kT.

With T' = 2, (3.1) is identical {up to normalization) to the probability distribution
function for the eigenvalues of random complex matrices [13]). In this special case,
quantities such as FE(n;«a)—the probability that a randomly chosen point in the
complex eigenvalue plane has no eigenvalues within a radius a—can be calculated
exactly [12]. From these exact results the asymptotic expansion of E(0;a) and
E(n;a)/ E(0; ) for large-o can be obtained [12].

It is the objective of this section to reproduce the leading two terms of these
expansions using an electrostatic/thermodynamic argument. Since this argument
is applicable for all values of I', predictions for the behaviour of the asymptotic
expansions as functions of I' are also obtained.

3.2, The electrostatic/thermodynamic argument

Let D_(C,) denote the disk (circle) of radius o centred at the origin in the XY
plane, which forms the hole in the plasma. The physical basis of our argument is
that in the macroscopic hole size limit & — oo, the plasma behaves like a perfect
conductor. Thus the total charge ~gq(a? — n) inside the hole, due to the uniform
background and n mobile charges (n is assumed fixed), will be exactly cancelled by
an induced surface charge density, of total charge g(a® — n), which forms on the
boundary of the hole. Furthermore, due to the rotational symmetry of the disk-
shaped hoie, the induced surface charge will be uniform, and thus have constant
charge density go = g(a® — n)/(27a).

Suppose initially that there are no particles in the hole (ie. n = 0). According
to a beuristic formula of Dyson [22], E(0; ) is related to the electrostatic energy
g*Vj(«) of the hole-induced surface charge system, and its entropy

Vo(e) :=/ clogods (3.2a)
=2raclogo (3.2b)
by the formula

E(Q o) ~ exp(-T'Vi(a) - (1 - /4 V;(a)). (33)
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(Note the factor (1~ I' /4) replaces (1~ I'/2) in [22] since here the plasma system
is two-dimensional.)

The electrostatic energy of the hole-induced surface charge system consists of the
background-background energy

2

U, = —92-2-(-71;) /D , fD logiry = dr, dr, (3.42)

the background-induced surface charge energy
1 o 27 .

U, = q2<~;) (-2—;)/0 «dé, /Da log |r, — ae'®?|dr, (3.46)
and the surface-charge-surface-charge energy

U, = ¢ (1)2 /h /ZW log |ae'® — ae®?|edb; o df, (3.4¢)

2\2x /) Jo Jo ]

so that

¢*Vi(e) = Uy + U, + Us. (3.4d)

Evaluating the integrals in (3.4a)-(3.4c) gives
Vi(e) = a*/8. 3.5)

Substituting (3.5) and (3.2b) (with o = a/27) in (3.3) we obtain the asymptotic
expansion

E(0, @) ~ exp(—Ta*/8 — (1-T/4)allog ). (3.6)

For I' = 2, this agrees with the first two terms of the expansion obtained rigorously
from the exact expression for £(0; ) [10, 12].

To study the asymptotics of E(n;a)/E(0;a) we introduce an ansatz which,
considering that there are now n mobile charges in the hole, is a natural
generalization of (3.3):

E(n;a)
E(0; )

~ exp{-T'[Vi(n, a) = V1(0,a)] - (1T /4}{V3(n, o} ~ V5(0, a)]}

ijz Lze"r‘g("““""“}drl...drn G.7)

where Vi(n,o) is the electrostatic energy of the hole-induced surface charge (the
latter depends on n) system, V,(n,a} is the entropy of the induced surface charge
and q’E(ry,...,r,) is the electrostatic energy of the particle-background (E,),
particle-induced surface charge (E,) and particle-particle ( E;) interaction.

If we replace the prefactors (o/27) and (o/27)% in (3.4b) and (3.4c) by
(e? —n)/(27c) and [(? — n)/(2ra)]? respectively, then

¢Vi(n,a) = U+ U + Uy (3-8)
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while from (3.25) we obtain

Vy(n,a) ~ —(a? ~ n)log a. (3.9)
Furthermore, with the n particles at »,,...,r, within the disk D,,
1 n
— 2
El—q;ELnloghurjldr (3.10a)
n 2 )
E, = —¢*(a® — n)/(27a) Z/ log|r; — ae'?|cdd (3.108)
i=17?
Ey=-q* Y loglr; —ml. (3.10¢c)
Igi<kgn

Evaluating (3.8), (3.10a) and (3.10b) and substituting the resulting expressions
together with (3.10¢) in (3.7) we obtain

E(n; o) e(T/2)e’n
E(Ca) n( )arnm-ru_r/a)n (3.11a)
where
Cury= [ [ et [ oy —riary . dr,. (3.11)
R JR? it
Li<kgn
With " = 2 [14]
n=-1
=0

and (3.11a) is in precise agreement with the leading factor of the exact asymptotic
expansion given in [12, equation (30)].

4. Asymptotics of E(0; p) for random complex matrices

4.1. The grand partition function

Our objective in this and the next subsection is to use the Fisher-Hartwig formuia
[14-16] to verify (1.6) for a class of one-dimensjonal single-species fluid systems,
in which the particles are restricted to a linear lattice {Tn},__pr/241,...,0172 (FOF
convenience M is chosen to be even). Suppose there are /V particles with coordinates
Ny, Mgy e s Ry, Where ~M /241 n; < M/2 Then we define the fluid system by
a special determinant structure for its Boltzmann factor:

e~PEN = detla(n; — ny))j gy, N @.n
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where a(n) is completely arbitrary apart from the requirements that (4.1) be greater
than or equal to zero for each N and

Fl@)=1+¢ ) a(n)ein® (4.2)

n=—oo

be non-zero and piecewise smooth for all { > 0. We note that (4.1) is symmetrical
in the particle coordinates and translationally invariant.

In general the potential corresponding to (4.1) will have N body interactions.
However, in the special case that

i

A @)
use of the Cauchy double alternant determinant identity shows that
1\V [rr, —7n,?
det[a(n_,- - nk)]j,k=l,...,N = (E) H IT’"-j “(rn, F 20 (4.4)

15 <hgN

The right-hand side of (4.4) is the Boltzmann factor of the one-component log-gas
at a distance ¢ from a metal wall [23,24]. With each 7n; regarded as a continuous

variable z;, the function (4.4) also occurs as the ejgenvalue distribution function in

Yukawa’s theory of perturbed random unitary Hamiltonians [25].
Because of the special structure (4.1), the grand partition function

Mz MJ2

Mcj
Emi=9 % D ... . e PEw (4.5)
2

!
=0 J° ni=—M /241 ny==M[2+1
is precisely the series expansion in ¢ of the Toeplitz determinant
Ep =det[§;  + Cald — B)]j e nsze1,. M2 (4.6a)

= det [ /u ] f(x)e'z"i(j"‘)dm] . (4.6b)

Srk=—M/241,...,M[2

The large-M expansion of the Toeplitz determinant is intimately related to properties
of the generating function f(z) as defined by (4.2).

Suppose a(n) is such that f is non-zero and piecewise smooth, with discontinuities
at t,,...,1g in the interval [0, 1]. Then we can write

R
() = bz} [[ tp.(z - z,) @.n

r=1

where b(x) is piecewise smooth and continuous at ¢;,...,tg, and

—Tig(1/2—a)
e 0gz<1
tﬂ(:r) = { (48)

tﬂ(m+1) -I<a<0
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for some B;,...,8, € C. According to the Fisher-Hartwig formula, the Toeplitz
determinant (4.6) with generating function (4.7) has the large-A asymptotic
expansion

1 R
log =, ~ M/u log(b(z))dz — log M S 82+ E(bi Bi.. .. Br)- 4.9

r=1

The constant E(b; 3;,...,3,.) has been calculated explicitly by Basor [26] (see also
[15] and [16]). We are particularly interested in one of its functional properties:

E(b;By,--..8g) = E(1/b;=p54y,...,~Br)- (4.10)

4.2. The hole probability

From (2.10) we know that the hole probability £(0; p) can be calculated from the
n-particie distribution function. Furthermore, when the distribution function has a
determinant structure the formula (2.10) can be further simplified to give E(0; p) as
a single Toeplitz determinant (recall (2.11) and (2.12)). These properties are features
of the present model. By introducing position-dependent fugacities in (4.5), it follows
(cf (2.7)) that

p(my,...omy) =det{G(m; — my)l; i1, 0 (4.11a)
where

G(m; ~my) = & 1 ~ (m;|(1ps + (A )~ my) (4.11b)

Ape = [a(F = B ke myain,o M)z (4.11c)

The notation {j|X|k) denotes the element in row j and column & of the matrix X.
It follows from (4.11b) that, in the limit M — oo, m fixed, G(m) satisfics the
equation

G(my —m3) + ¢ Z a(my — my)G(my — m3) = (a(m; — my) (4.12)

which is straightforward to solve using Fourier series. We find

L ofrmy — .
G(m) = | i(f()T)le-z’”Mdm (4.13)

where f(x) is defined by (4.2). The analogue of (2.12) then gives
Y1 aigiew
E(0, =det[/ —_—e '“J"] . 4.14
©.p) i} f(x) Srkzhp ( )

We observe that the generating function in (4.14) is precisely the reciprocal of the
generating function in (4.6b). Hence the decomposition of the former into Fisher—
Hartwig form replaces b(z) in (4.7) by 1/b(z) and 3, in (4.7) by -3, for each
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r=1,...,R. From (4.9} and the functional property {(4.10), the large-p expansion
of (4.14) is thus

1 R
log E(0p) ~ ~p [ log(b(=)) dz —logp ) 2 + (b3 B, .- Bp). @.15)

r=1

Comparison of (4.15) with (4.9) shows that the conjecture (1.6) is valid for this class
of fluid system. Furthermore, the constant terms of the RHS of (4.9) and (4.15)
are identical. This has also been a feature of the other fluid systems, with exclusively
mobile species, for which we have been able to calculate the expansion of =,,, E(0; p)
and =5, E(0;a) [27]. We thus conjecture that the terms O(1) in the expansions
(1.5) and (1.6) are equal for general fluid systems of any dimension, provided all
components of the system are mobile.

4.3. A sum rule for the density profile

For continuous fluid systems the contact theorem says that the density p, at the
boundary of the container is related to the bulk pressure P by

p,=BP. {4.16)
For the present class of lattice fluid systems, it is possible to relate the density p, at

the leftmost lattice site to the bulk pressure.
To see this, from (4.9) the bulk pressure is given by

1
rﬁP:/ﬂ log b(x) dz (4.17)

while from (4.11)

ro=1- lim Ry (4.18)
where
Ry = {(~M/24 1|(1p + Ay )Y = M2 4 1), (4.19)

Now, with =,, given by (4.6a), Cramer’s rule (see e.g. [28, p 218]) gives that

Ry = Ep/Epma1 (4.20)
so from (4.9)
1
lim R, =exp (—f log b(m)d.’r) . 4.21)
M—oo 0

Substituting (4.21) in (4.18) and comparison with (4.17) gives the sum rule
o = 1-e""FP, (4.22)

In the continuum limit = — 0, (4.22) reduces to the contact theorem (4.16).
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Another sum rule for this system relates the coefficient of log M in (4.9) to the
asymptotic decay of the density profile at large distances from the edge of the system
[29]. To derive this sum rule, we note from (4.9) that

(N) ~ ca;;zp M+ C%% log M (4.23)
where
1
T3P = / log(b(z))dx (4.24)
1]
and
R
w=-Y g, (4.25)
r=1

But physically, we can decompose the average number of particles in the system as
(N} = Ny + 2N, (4.26)

where N, denotes the number of particles in the bulk and NN, denotes the excess
number of particles in the neighbourhood of either boundary. The latter quantity is
given in terms of the dimensionless density p(¢) (i.e. average number of particle on
lattice site £) and dimensionless bulk density rp, by

0

No= > (p(&)~1p). (4.27)

I==M[241
Comparing (4.23) and (4.26), and using (4.27), we have that for large-M

O

2]
CplogM ~ 30 (p(8)~7py) (428)
=-M/2+1

and thus for large-£ (but £ < M/2),

9wl

ace

From (4.11a) and (4.25), the prediction (4.29) can be written as the following
conjecture for the behaviour of the diagonal elements of the inverse of a certain class
of Toeplitz matrices. Let the generating function of the Toeplitz matrix (1, + CAy;)
be of the Fisher—Hartwig type (4.7), and suppose the elements of the matrix are
labelled by the pair (j, k) with —iM + 1< 7,k < £M (M even). Then for M and
€ large but with £ < 1M,

(=M + (10 + ALY =AM + &) — (0(1, + CAL Y0

/& 1
2
~$3¢ (i, B,) 7 (4.30)

P-4 M + €)= 7, @29)
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