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Log-gases, random matrices and the Fisher-Hartwig 
conjecture 

P J Fbrrestert 
Department of Mathematics, La Trobe University. Bundoora, Victoria 3083. Auslralia 

Received 25 August 1992 

AbslracL Some features of the probability E ( n , R )  of a region 72 in certain log- 
potential systems mntaining precisely n panicles are noted. First, it is shown thar 
a quantity analogous lo E(n ,R)  for a new solvable twocomponent log-gas can be 
expressed in terms of lhe Txpliu determinant discretization of a Fredholm determinant 
which occurs in the calculation of E ( n , R )  for Hermitian random malries. Second, the 
first two terms of the asymptotic large-R expansion of E ( n , R , )  for mmplex random 
matrices, when R is a disk, are derived by using an elecrrastaticllhe-odynamic argument 
based on an analogy with the two-dimensional oneamponent plasma. Finally, by using 
the FBher-Hanwig 'mnjectum' b m  h e  theory of lbeplitz determinants, the asymptotics 
of E(0, R) for a class of onedimensional lattice systems is shown to obey a sum nile 
which has been mnjectured Lo be applicable to all fluid systems with exclusively mobile 
species. 

1. Introduction 

A quantity which can be used to characterize statistical systems is the distribution 
of the spacing between nearest-neighbour constituents of the system. The energy 
excitations of heavy nuclei (see e.g. [I]) and the times of arrival and/or service 
in a queueing system (see e.g. [2]) are examples of statistical systems which are 
often characterized in this way. As another example, the spacing between oppositely 
charged species in twocomponent log-potential Coulomb systems can be used to 
specify the phase of the system [3]. 

For systems in which the constituents can be ordered linearly, the distribution of 
the spacing between nearest neighbours can be calculated, by differentiation, from 
the probability that there are no constituents within a prescribed interval. One of the 
most important calculations of the latter and related probabilities is for the eigenvalue 
distribution of orthogonal, unitary and symplectic ensembles of random matrices [I]. 

A fundamental quantity in these random matrix calculations is the Fredholm 
determinant 

A(z,  t )  := det(1- zK) 

where K is the integral operator on the interval [-t , t]  with kernel 
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For Hermitian random matrices, the determinant (1.1) is related to the probability 
E(n,21) that exactly n eigenvalues lie in the interval [-t , t]  by the formula [l] 

For arbitrary values of z, the determinant (1.1) is of mathematical interest since it 
satisfies a nonlinear equation of the Painlev6 type [4-71. This property has been used 
to calculate the large-t asymptotic expansion of E(n;Zt)  [SI. In section 2 of this 
paper we will give a physical interpretation to the Toeplitz determinant discretization 
of the Fredholm determinant (1.1) for -1 < z < 0. This complements the physical 
interpretation of the same Toeplitz determinant discretization with z = 1 given 
recently in [9]. Explicitly, we will calculate the general (n,, n,)-particle distribution 
function for an asymmetric hvo-component lattice gas in which the species interact 
via the logarithmic potential. From this, we can show that the probability a prescribed 
number of lattice points ir, free of the most dilute of the hvo-components is given in 
terms of the Toeplitz determinant discretization of (1.1). 

The quantity analogous to E ( n ; 2 t ) , E ( n ; a )  say, for random complex matrices 
has recently attracted attention [lo-121. Here we require the probability of exactly 
n eigenvalues in a disk of radius a in the complex eigenvalue plane. The large-a 
asymptotic expansion of E ( n ; a )  is given in (121. In section 3 of this paper we 
will use a well known 1131 analogy between the probability distribution function 
for the eigenvalues of random complex matrices, and the Boltzmann factor of 
the two-dimensional one-component plasma at a special value of the coupling, to 
rederive the leading terms of this expansion. The derivation, which is based on an 
electrostaticithennodynamic argument, gives an asymptotic expansion which should 
remain valid for the plasma system at aU couplings. 

The plasma systems studied in sections 2 and 3 have an immobile neutralizing 
background charge density. This feature is responsible for the leading behaviours 

E ( o ; z ~ )  - e-cItz and E(& a )  - (1.4) 
where in both cases the exponent is proportional to the square of the ’volume’ 
of the particle-free region. For fluid systems with exclusively mobile species, the 
leading behaviours analogous to (1.4) are expected to have the exponent directly 
proportional to the volume of the particle-free region [9]. More precisely, consider 
a one-dimensional lattice gas of A4 sites with lattice spacing T, and suppose that the 
grand partition function 2 has the large-hf behaviour 

(1.5) = I ehfT6P+WbgM+O(l )  

where T P P  denotes the dimensionless pressure. Then the conjecture of 191 states 
that for large-p, 

(1.6) E ( o ; ~ )  - e - p ~ P p t ~ ~ ~ ~ p t O ( l ) ~  

The aim in section 4 is to verify (1.6) for a class of fluid systems with, in 
general, n-body potentials. These fluid systems are defined by a special Toeplitz 
determinant structure for their Boltzmann factor. The conjecture (1.6) is verified by 
using the so-called Fisher-Harhvig ‘conjecture’ (formula) [14-161, which gives terms 
up to and including O( 1) in the asymptotic expansion of meplitz determinants with 
discontinuous generating functions. Furthermore, it is found that the terms O( 1) in 
(1.5) and (1.6) agree; a property we conjecture to hold true in general. 
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2. Physical interpretation of the Toeplitz determinant discretization of A(%, t) 

21. A solvable asymmetric log-gas 

Our first objective is to compute the correlation functions for an asymmetric two- 
component log-gas confined to a one-dimensional lattice. The correlations will then 
be used to calculate E-(U,p)-the probability that an interval of p lattice sites is free 
of the negatively charged particles. This probability involves the Tbeplitz determinant 
discretization of A( z , i). 

Suppose the positively charged particles have density pt, and the negatively 
charged particles density p-,  where p -  < p+. Charge neutrality is achieved by 
introducing a uniform background charge of density q such that 

P+ - P- = II. (2.1) 

Let the charges be restricted to one of two interlacing sublattices which lie 
along the X-axis: {TTI),,=-,,,~~+,,...,~~~ for the positive charges and { ~ ( m  - 
+)}m=-M,z+1,,..,M/2 for the negative charges (for convenience A4 is taken to be 
even). Also, impose periodic boundary conditions in the direction of the lattice, 
period r M .  

Tb facilitate the exact calculation, we have found it necessary to first place the 
system a finite distance E from a metal wall and to use the grand canonical ensemble in 
which the density p+ is controlled by the fugacity E+ and the density p- is controlled 
by the fugacity E - .  With the metal occupying the region y > E in the X Y  plane, 
the pair potential experienced by a particle of charge q at (z,O) due to a particle of 
charge q’ at (z’,O) is given by 

I sin n(r - z ‘ ) / L  
s i n x ( r -  I’ + 2 i ~ ) / L  c$(z,z’) = -qq‘log 

where L = rM, and there is a self-energy 

&( z) = i q z  log I sin(27iie / t) 1. 

In addition to the particles, we require a uniform background of charge density 
-qq. Supposing that there are N+ positive and N -  negative charges, a short 
calculation using (2.2) gives that the energy due to the particle-background and 
background-background interaction is 

- 2T?742E(Nt - N - )  + x(qq)%L. (2.4) 

From (2.2)-(2.4) we can write down the Bolmann factor for this system. At 
the special value of the coupling qZ/kT = 2 the Boltzmann factor can be written 
as a Cauchy double alternant determinant. The corresponding grand partition 
function S2(a, b) ,  generalized to include position-dependent fugacities C+ c C+a(n), 
C- c C- b( m), can then be recognized as in expansion of a particular block Tbeplitz 
determinant (details of these steps are given in [17], where a similar model in a 
two-dimensional domain is considered). The final result is 
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where 

1, denotes the identity matrix of order n and 

(25n < + - - e4arll e+ <- = e-4sa7~-. 

We note in passing that by rearranging the rows and columns in (2.5a) we can 
obtain a block anticyclic matrix. With a = b = 1 this matrix can be diagonalized to 
give an explicit factorization of the grand partition function: 

The distribution of the zeros of (2.6) for et = C- has recently been analysed by 
Smith [18]. 

22 The correlation functions 

By extending the reasoning given in [17] and 1191, it follows from (25) that 
the (jl, j,)-particle (dimensionless) distribution function for j, positively charged 
particles at n l , .  . . , nj ,  and j, positively charged particles at inl , .  . . , mj, is given 
bY 

dn,,. . . ,nj,;ml, .  . . ,mj,) 

where, in the thermodynamic limit M -t 00, G,,, is specified by the set of four 
equations (for sI ,s3 = +,-) 
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The equations (2.8) can be solved by using Fourier series, as detailed in [lq. 
Doing this, and taking the limit E - 00 so as to remove the metal wall, we obtain 

G++(m) = 6m,r3 - A,l(m) G+-(m) = -Ai [ (  m + 4)  

G-+(m) = AzI(-(m + 4)) G--(m) = A z l ( - 7 n )  (2% 

where 

and 

(2.9c) 

The exact result (2.7, (2.9) complements the exact evaluation of the distribution 
functions given by Cornu and Jancovici 1201 for the continuous two-dimensional 
domain version of this model. 

2.3. PTobabiliq of an interval free  of the negative charges 

Let h- (p )  denote the probability that the negative charges are excluded from an 
intetval of p lattice sites. Then for any fluid system defined on a onedimensional 
lattice [9] 

(2.10) 

where p- (  m,, . . . , m L )  denotes the dimensionless distribution function for e particles 
of negative charge at ml, . . . , mL. For the present model, from (2.7), 

~-(ml,...,n/)=det[G--(mj -?nj,)Ij,j,=~ ,_.., t (2.1 1) 

and (2.10) can he recognized as an expanded form of a 'Ibeplitz determinant. Thus 

h-(p) = - G-- ( j  - k)lj ,k=l ,..., (212) 

which, after some straightfolward rearranging using ( 2 9 a ) ,  gives the desired 
relationship with the discretization of the Fredholm determinant (1.1): 
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3. Asgnptotics of E(n; a) lor random complex matrices 

3.1. me Coulomb gas analogy 

Consider a two-dimensional one-component plasma consisting of N mobile positively 
charged particles (strength q), with positions specified by the complex coordinate 
z j  = + iyj , j = 1,. . . , N .  Assume a neutralizing background, in the shape of a 
disk of radius centred at the origin, with charge density -q /s .  The Boltzmann 
factor for the system is, up to a multiplicative constant (see eg. [21]), 

h, 

where 

r := q2/kT.  

With r = 2, (3.1) is identical (up to normalization) to the probability distribution 
function for the eigenvalues of random complex matrices [U]. In this special case, 
quantities such as E(n;a)-the probability that a randomly chosen point in the 
complex eigenvalue plane has no eigenvalues within a radius a - c a n  be calculated 
exactly [12]. From these exact results the asymptotic expansion of E(0;a) and 
E(n;a)/E(O;a)  for large-a can be obtained 1121. 

It is the objective of this section to reproduce the leading two terms of these 
expansions using an electrostatidthermodynamic argument. Since this argument 
is applicable for all values of r, predictions for the behaviour of the asymptotic 
expansions as functions of r are also obtained. 

3.2 The electrm~aticlthermcdynamic argument 
Let D,(C,) denote the disk (circle) of radius a centred at the origin in the XY 
plane, which forms the hole in the plasma. The physical basis of our argument is 
that in the macroscopic hole size limit a -, 00, the plasma behaves like a perfect 
conductor. Thus the total charge -q (az  - n )  inside the hole, due to the uniform 
background and n mobile charges (n is assumed ked) ,  will be exactly cancelled by 
an induced surface charge density, of total charge q(aZ - n), which forms on the 
boundary of the hole. Furthermore, due to the rotational symmetry of the disk- 
shaped hole, the induced surface charge will be uniform, and thus have constant 
charge density qu = q ( a 2  - n ) / ( 2 ~ a ) .  

Suppose initially that there are no particles in the hole (i.e. n = 0). According 
to a heuristic formula of Dyson [22], E(O;a) is related to the electrostatic energy 
q2V,(a)  of the hole-induced surface charge system, and its entropy 

&(a) := u loguds  

= 2Tau log U 

by the formula 

E(O;a) -exp(-rV,(a)-( l -  r /4)VZ(a)).  (3.3) 
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(Note the factor (1  - r/4) replaces (1 - r/2) in [22] since here the plasma system 
is two-dimensional.) 

The electrostatic energy of the hole-induced surface charge system consists of the 
background-background energy 

the background-induced surface charge energy 

and the surface-charge-surface-charge energy 

so that 

q2v,(CY) = U ,  t U, t U,. (3.44 

v , ( C Y )  = a4/8. (3.5) 

Evaluating the integrals in (3.4a)-(3.4c) gives 

Substituting (3.5) and (3.B) (with U = u/2a)  in (3.3) we obtain the asymptotic 
expansion 

E(@ C Y )  - exp(-ra4/8 - (I  - r/4)2 log a). (3.6) 

For r = 2, this agrees with the first two terms of the expansion obtained rigorously 
from the exact expression for E(@cY)  [lo, 121. 

To study the asymptotic. of E(n;a ) /E(O;a)  we introduce an ansatz which, 
considering that there are now n mobile charges in the hole, is a natural 
generalization of (3.3): 

where l{(n,a)  is the electrostatic energy of the hole-induced surface charge (the 
latter depends on n) system, h ( n , a )  is the entropy of the induced surface charge 
and q2E(T1,.  . . , r n )  is the electrostatic energy of the particle-background ( E l ) ,  
particle-induced surface charge (E,) and particle-particle ( E3) interaction. 

If we replace the prefactors (cu/27r) and ( 0 1 / 2 ~ ) ~  in (3.48) and (3.4~) by 
(a2 - n)/(2na) and [(a2 - n)/(2aa)12 respectively, then 

q*v,(n,CY) = U ,  t U2 t Us (3.8) 
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while from (3.26) we obtain 

V z ( n , a )  - -(a2 - n) log a. (3.9) 

Furthermore, with the n particles at T ,  , . . . ,T, within the disk D,, 

(3.1Oa) 

(3.1oC) 

Evaluating (3.8), (3.10~) and (3.10b) and substituting the resulting expressions 
together with (3.10~) in (3.7) we obtain 

where 

(3.11a) 

(3.11b) 

with r = 2 1141 

?&-I 

j = O  

Cn(2) = n j !  (3.12) 

and (3.11a) is in precise agreement with the leading factor of the exact asymptotic 
expansion given in [I& equation (30)]. 

4. Asymptotics of E(O;p)  for random complex matrices 

4.1. The grand partition function 

Our objective in this and the next subsection is to use the Fisher-Hamig formula 
[14-161 to verify (1.6) for a class of one-dimensional single-species fluid systems, 
in which the particles are restricted to a linear lattice {m},=-Mlz+l,,,,,Mlz (for 
convenience M is chosen to be even). Suppose there are N particles with coordinates 
nl ,  nz,. . . , nN, where - M / 2  + 1 < n j  < M / 2 .  Then we define the fluid system by 
a special determinant structure for its Boltzmann factor: 

e-IBEN := det[a(nj - n k ) ] j , k = l  ,..., (4.1) 
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where a ( n )  is completely arbitrary apart from the requirements that (4.1) be greater 
than or equal to zero for each N and 

be non-zero and piecewise smooth for all { > 0. We note that (4.1) is symmetrical 
in the particle coordinates and translationally invariant. 

In general the potential corresponding to (4.1) will have N body interactions. 
However, in the special case that 

i 
r n  + 2ie 

u(n)  = (4.3) 

use of the Cauchy double alternant determinant identity shows that 

The right-hand side of (4.4) is the BOkzmaM factor of the one-component log-gas 
at a distance c from a metal wall [U,%]. With each r n j  regarded as a continuous 
variable z j ,  the function (4.4) also occurs as the eigenvalue distribution function in 
Yukawa's theory of perturbed random unitary Hamiltonians [25]. 

Because of the special structure (4.1), the grand partition function 

is precisely the series expansion in C of the lbeplitz determinant 

2 M  = det[6j,k + - li)lj,k= -M/Z+I,...,M/Z (4.W 

(4.a) 1 j,k=-M/ZtI, ..., M / 2  

1 
= det [ f( r)e-*ri(j-k) d r  

The large-M expansion of the lbeplitz determinant is intimately related to properties 
of the generating function j(r) as defined by (4.2). 

Suppose a ( n )  is such that f is non-zero and piecewise smooth, with discontinuities 
at t l r  . . . , t R  in the interval [0, I]. Then we can write 

R 

f(.) = IT la.(" - (4.7) 
r= I 

where b ( r )  is piecewise smooth and continuous at t , ,  . . . , t R ,  and 
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for some &,. . . ,& E @. According to the Fisher-Hartwig formula, the Tbeplitz 
determinant (4.6) with generating function (4.7) has the large-e-M asymptotic 
expansion 

The constant E( b; p,, . . . , p,) has been calculated explicitly by Basor [26] (see also 
[U] and [16]). We are particularly interested in one of its functional properties: 

E(b;pl,. .. ? P R )  = E(l/b;-Pl!. . . r-PR). (4.10) 

4.2. lke hole probabiliq 
From (2.10) we h o w  that the hole probability E(O;p) can be calculated from the 
?a-particle distribution function. Furthermore, when the distribution function has a 
determinant structure the formula (2.10) can be further simplified to give E(O;y) as 
a single Toeplitz determinant (recall (2.11) and (2.12)). These properties are features 
of the present model. By introducing position-dependent fugacities in (4.5), it follavs 
(cf (2.7)) that 

P(ml," .7m,) =det[G(mj - ~ k ~ l j , k ~ l , . , _ ,  n (4. lla) 

where 

G(mj - m k )  6 j , k  - (mjI(1nf t C A , v ) - ' b k )  (4.1 lb) 

A M  = [ d j  - IC)]., J k -  _- MIZtl,  .... M I Z .  (4.11~) 

The notation ( j l X l k )  denotes the element in row j and column k of the matrix X. 

equation 

G ( ~ I  - m3) + C 

It follows from (4.11b) that, in the limit M + CO, m, fixed, G ( T ~ )  satisfies the 

m 

4 m 1 -  m2)G(m2 - m3) = Ca(m1- m3) (4.12) 
lnz=-m 

which is straightfonvard to solve using Fourier series. We lind 

where f(z) is defined by (4.2). The analogue of (2.12) then gives 

(4.13) 

(4.14) 

We observe that the generating function in (4.14) is precisely the reciprocal of the 
generating function in (4.66). Hence the decomposition of the former into Fisher- 
Hartwig form replaces b(z) in (4.7) by l/b(z) and p, in (4.7) by -& for each 
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r = 1, . . . , R. From (4.9) and the functional property (4.10), the large-p expansion 
of (4.14) is thus 

Comparison of (4.15) with (4.9) shows that the conjecture (1.6) is valid for this class 
of fluid system. Furthermore, the constant terms of the RHS of (4.9) and (4.15) 
are identical. This has also been a feature of the other fluid systems, with exclusively 
mobile species, for which we have been able to calculate the expansion of E,, E(@ p) 
and ER, E(0;a )  [27]. We thus conjecture that the terms 0(1) in the expansions 
(1.5) and (1.6) are equal for general fluid systems of any dimension, provided all 
components of the system are mobile. 

4.3. A sum rule for the dens@ profile 

For continuous fluid systems the contact theorem says that the density pE at the 
boundary of the container is related to the bulk pressure P by 

P, = PP. (4.16) 

R r  the present class of lattice fluid systems, it is possible to relate the density pI at 
the leftmost lattice site to the bulk pressure. 

'Ib see this, from (4.9) the bulk pressure is given by 

rPP = log b( x )  dx (4.17) l 
while from (4.11) 

r p I  = 1 - lim R, (4.18) 
M-CO 

where 

R, = (-M/2 + 11(1M f CA,)-'[ - M / Z  + 1) .  

Now, with 3, given by (4.6a), Cramer's rule (see e.g. [ZS, p 2181) gives that 

(4.19) 

R, = ZAf/EM+l (4.20) 

so from (4.9) 

I 
,-a, lim R , = e x p ( - L  logb(x)dx). (4.21) 

Substituting (4.21) in (4.18) and comparison with (4.17) gives the sum rule 

r p ,  = 1 - e- M P .  (4.22) 

In the continuum limit r -+ 0, (4.22) reduces to the contact theorem (4.16). 
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Another sum rule for this system relates the coefficient of log M in (4.9) to the 
asymptotic decay of the density profile at large distances 6om the edge of the system 
[29]. To derive this sum rule, we note from (4.9) that 

( N )  - C-M + 
ac 

(4.23) 

where 

(4.24) 

and 
R 

w = -E@;. (4.25) 
r=l 

But physically, we can decompose the average number of particles in the system as 

( N )  = Nb i- 2 N s  (4.26) 

where Nb denotes the number of particles in the bulk and N ,  denotes the excess 
number of particles in the neighbourhood of either boundary. The latter quantity is 
given in terms of the dimensionless density p(C) (i.e. average number of particle on 
lattice site e)  and dimensionless bulk density r p b  by 

0 

N E  = ( P ( e ) - 7 p b ) .  (4.27) 
k- Mf Zf 1 

Comparing (4.23) and (4.26), and using (4.27), we have that for large-M 

(4.28) 

and thus for large-! @ut C < M/2), 

(4.29) aw 1 
p ( - $ M  + E )  - 7pb - c-- a{ e' 

From (4.11a) and (4.25), the prediction (4.29) can be written as the following 
conjecture for the behaviour of the diagonal elements of the inverse of a certain class 
of Toeplitz matrices. k t  the generating function of the Toeplitz matrix (IM + CA,) 
be of the Fisher-Hartwig type (4.7), and suppose the elements of the matrix are 
labelled by the pair (j, I C )  with -4M + 1 4 j, k < f M  (M even). Then for M and 
e large but with C < fM, 
(-2 I A4 + f l I ( 1 ~  + CA,)-'l - fM + E )  - (ol(1M + {AM)-'IO) 

(4.30) 
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